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part of the one-gluon-exchange interaction leads to mo-
mentum-space wave functions that fall off algebraicallyA set of exactly computable orthonormal basis functions that are

useful in computations involving constituent quarks is presented. rather than like Gaussians. This algebraic falloff is also
These basis functions are distinguished by the property that they consistent with predictions of asymptotic QCD.
fall off algebraically in momentum space and can be exactly Fourier– The purpose of this paper is to suggest the use of basis
Bessel transformed. The configuration space functions are associ-

functions that have all of the advantages of the oscillatorated Laguerre polynomials multiplied by an exponential weight,
basis with the additional property that they fall off algebrai-and their Fourier–Bessel transforms can be expressed in terms of

Jacobi polynomials in L2/(k 2 1 L2). A simple model of a meson cally in momentum space.
containing a confined quark-antiquark pair shows that this basis is The configuration–space basis functions, sometimes
much better at describing the high-momentum properties of the called ‘‘Sturmians’’ [3], have been used successfully in
wave function than the harmonic-oscillator basis. Q 1997 Academic

atomic and chemical physics [4, 5] calculations. In thisPress

paper, we exploit the fact that they have analytic Fourier–
Bessel transforms, and these transforms fall off like polyno-
mials in momentum space. This makes them well suited

I. INTRODUCTION for models where it is advantageous to work in both con-
figuration and momentum space.

The harmonic oscillator basis has been used extensively The method is applied to low lying states of a constituent
in numerical calculations involving confined constituent quark model of a meson. The model has a relativistic ki-
quarks [1]. The advantage of this basis is that the basis netic energy, a Coulomb interaction, a linear confining

interaction, and a smeared out spin–spin interaction. Cal-functions are easily computed and Fourier–Bessel trans-
culations of eigenfunctions and eigenvalues of this constit-formed. This permits the computation of matrix elements
uent quark mass operator, obtained by projecting the massin either a coordinate or momentum representation. For
operator on the subspace of the Hilbert space spannedproblems involving light quarks, where confined quarks
by a finite number of these basis states, give convergedmust be treated relativistically, matrix elements of kinetic
eigenfunctions and good variational bounds on the massenergy operators that involve square roots, and matrix
eigenvalues. In particular, the high-momentum tail of theelements that involve momentum dependent Wigner and/
wave function is described quite well in a truncated basis.or Melosh rotations are best computed in momentum

We also discuss briefly the extension of the methodspace. Matrix elements of confining interactions, which
to cases where the configuration–space wave functionare simple to compute in configuration space, require the
has an integrable fractional power singularity at theevaluation of integrals over singular distributions [2] in
origin [6, 7].momentum space. The advantage of the harmonic oscilla-

tor basis is that it is straightforward to evaluate both types

II. ELEMENTARY CONSIDERATIONS
of matrix elements, completely avoiding difficult calcula-
tions.

Although in principle it is possible to perform very accu- In configuration space the radial basis functions are given
rate model calculations using a harmonic oscillator basis, in terms of polynomials in r times an exponential. An
in practice the oscillator basis does not provide an efficient orthonormal basis set is then given by [3]
representation of meson eigenfunctions of mass operators
that arise from a linear confinement plus one-gluon-ex-

fnl(r) 5
1

ÏNnl

xlL(2l12)
n (2x)e2x, (1)

change interaction. The reason for this is that the Coulomb
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where x 5 Lr, L(2l12)
n (x) is the associated Laguerre poly-

f̃nl(k) 5 !2
f
Ey

0
r2jl(kr)fnl(r) dr. (10)nomial

First, we note that the Fourier–Bessel transform of the
L(a)

n (x) 5 On
m50

(2)mSn 1 a

n 2 m
D xm

m!
(2) unnormalized function rle2Lr is [9]

with a 5 2l 1 2 and !2
f
Ey

0
jl(kr)rle2Lrr2 dr 5 !2

f
2L(2k)l(l 1 1)!

(L2 1 k2)l12 . (11)

Nnl 5 L23 (As)2l13 G(n 1 a 1 1)
n!

(3) Second, we note that multiplication of the unnormalized
function rle2Lr by r is equivalent to the operation 2/L
on its Fourier–Bessel transform,is defined so that the fnl(r) satisfy the orthonormality con-

dition

!2
f
Ey

0
r2jl(kr)rl11e2Lr 5 2



L
S!2

f
(2L)(2k)l(l 1 1)!

(L2 1 k2)l12 D . (12)
dnm 5 Ey

0
r2 dr fl

n(r)fl
m(r). (4)

Applying 2/L to the right-hand side of Eq. (12) n times
The momentum space functions are the Fourier–Bessel gives the original function multiplied by a polynomial of

transforms of the fnl(r)’s, degree n in t 5 1/(k2 1 L2). In addition the coefficient of
the leading power of t is of the same sign as the coefficient
of the leading power of r in the associated Laguerre polyno-

f̃nl(k) 5 !2
f
Ey

0
r2 dr jl(kr)fnl(r). (5)

mial. The Fourier–Bessel transform, being unitary, pre-
serves orthonormality. Thus the Fourier–Bessel transform
of fnl has the formThey satisfy the orthonormality condition

dnm 5 Ey

0
k2 dk f̃l

n(k)f̃l
m(k). (6) f̃nl(k) 5

kl

(L2 1 k2)l12 3 Qn(t), (13)

With these definitions both fnl(r) and f̃nl(k) are real. where the Qn(t) are orthogonal polynomials in t with
These functions, along with spherical harmonics, can weight k2l12/(L2 1 k2)2l14. To identify Eq. (13) with the

be used to expand either the momentum or coordinate Fourier–Bessel transformation of Eq. (1) it is enough to
representations of approximate eigenstates. The coeffi- choose the phase of the normalization constant so the
cients in the expansions coefficient of tn in Qn(t) has the same sign as the coefficient

of rn in L21l
n (r).

c(r) 5 O
nlm

cnlmfnl(r)Ylm(r̂) (7) Specifically, one can write

f̃nl(k) 5
1

ÏÑnl

yl

(y2 1 1)l12 Kn(u), (14)and

c̃(k) 5 O
nlm

c̃nlmf̃nl(k)Ylm(k̂) (8)
where y 5 k/L and Kn(u) is a polynomial in u 5 1/(y2 1
1) which satisfies the following orthonormality condition,

are related by

dnm 5 Ey

0
k2 dk f̃nl(k)f̃ml(k). (15)

c̃nlm 5 (2i)lcnlm . (9)

The integral in Eq. (15) can be transformed by the variableThese relations follow directly from the formula for the
change [10],spherical expansions of plane waves [8]. The phase factor

ensures that c̃*(k) 5 c̃(2k) for real c(r).
We now consider the momentum-space wave function, y 5 !1 1 x

1 2 x
; dy 5

dx
(1 2 x)3/2(1 1 x)1/2 ; u 5

1 2 x
2

, (16)
given by the Fourier–Bessel transform of (1),
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TABLE Ito the integral

Eigenvalues of the Pion Mass Operator Using the
Polynomial Basis

dnm 5 222l24 L3

Ñnl

E1

21
dx(1 2 x)l13/2(1 1 x)l11/2Kn(u)Km(u).

Basis M
(17)

10 0.14071
20 0.14037The polynomials Kn(u) can be expressed in terms of Ja-
40 0.14019cobi polynomials,
80 0.14013

Kn S1 2 x
2 D5 P(l13/2,l11/2)

n (x), (18)

The parameter values as 5 0.5, b 5 0.197 GeV2, c 5
where 20.777 GeV, quark mass m 5 0.36 GeV, and r0 5 0.66

GeV21. The parameters c and r are chosen to provide a
fit to the physical f and r masses of 0.140 GeV and 0.784

Pa,b
n (x) 5

G(a 1 n 1 1)
n!G(a 1 b 1 n 1 1) O

n

m50
(19)

GeV, respectively.
The mass operator is diagonalized using 10, 20, 40, and

80 basis states. The momentum scale L 5 2.0 GeV is chosenSn

m
D G(a 1 b 1 n 1 m 1 1)

2mG(a 1 m 1 1)
(x 2 1)m. to minimize the mass eigenvalue for 10 basis states. The

eigenvalues are given in Table I. The corresponding mo-
mentum wave functions are shown in Fig. 1. Using only

This gives the expression for f̃nl(k), 10 basis states, the wave function is quite stable up to
k 5 15 GeV.

The calculations are done using recursion relations to
f̃nl(k) 5

1

ÏÑnl

(k/L)l

[(k/L)2 1 1]l12 P(l13/2,l11/2)
n Fk2 2 L2

k2 1 L2G , compute both the associated Laguerre and Jacobi polyno-
mials:(20)

(n 1 1)L(a)
n11(x) 5 (2n 1 a 1 1 2 x)L(a)

n (x)
(23)where the normalization constant Ñnl is

2 (n 1 a)L(a)
n21(x),

Ñnl 5
L3

2(2n 1 2l 1 3)
G(n 1 l 1 Gs)G(n 1 l 1 Ds)

n!G(n 1 2l 1 3)
. (21)

and

2(n 1 1)(n 1 a 1 b 1 1)(2n 1 a 1 b)P(a,b)
n11 (x)At this point the normalization is determined up to an

overall phase. The phase is fixed by requiring the sign of
5 [(2n 1 a 1 b 1 1)(a2 2 b2)

(24)the leading power of r in the associated Laguerre polyno-
(2n 1 a 1 b)(2n 1 a 1 b 1 1)(2n 1 a 1 b 1 2)x]P(a,b)

n (x)mial be the same as the sign of the leading power of
1/(L2 1 k2) appearing in the Jacobi polynomial. Inspection

2 2(n 1 a)(n 1 b)(2n 1 a 1 b 1 2)P(a,b)
n21 (x).of Eqs. (2), (19), and (20) show that the phases are (2)n

in both cases. This shows that (20) is the Fourier–Bessel
For comparison purposes, we have also solved the eigen-transform of (1).

value problem with a harmonic oscillator basis, with

III. APPLICATION
f̃nl(k) 5

1

ÏÑ
yl L(l11/2)

n (y2)e2y2/2. (25)
To test the method, we consider a model [11] of a meson

consisting of a bound quark–antiquark pair. The mass op-
The mass operator is again diagonalized using 10, 20, 40,erator (Hamiltonian in the center-of-momentum frame) is
and 80 basis states. The momentum scale L 5 0.9 GeV is
chosen to minimize the mass eigenvalue for 10 basis states.

M 5 2Ïk2 1 m2 2
as

r
1 br 1 c

(22)
The eigenvalues are given in Table II. Convergence to the
exact eigenvalue is much slower than with the polynomial
basis. The corresponding momentum wave functions are1 ase2r2/4r2

0
2s(s 1 1) 2 3

12m2r3
0Ïf

.
shown in Fig. 2. For each basis size, the momentum wave
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much better wave functions can be obtained with the same
computational investment using the polynomial basis.

IV. INTEGRABLE SINGULARITY

The exact l 5 0 configuration–space wave function for
the model mass operator of Eq. (20) has an integrable
singularity [6, 7],

c(r) p
c
ra (26)

as r R 0. This singularity is seen in numerical calculations
based on B-splines in [12] and persists in the presence of
the confining interaction.

Naive application of this wave function can lead to un-
physical predictions in calculations, such as decay widths,
which depend on the value of the wave function at the

FIG. 1. Pion momentum wave function using the polynomial basis.
The dotted, dot-dashed, dashed and solid curves correspond to using 10,
20, 40, and 80 basis functions, respectively.

function is stable until a critical momentum is reached, after
which it exhibits a Gaussian falloff characteristic of a trun-
cated oscillator basis. For 10 basis states, this cutoff is about
5GeV,which maybeadequate foruse incalculations involv-
ing moderate momentum scales (say, 1 GeV, or less), but

TABLE II

Eigenvalues of the Pion Mass Operator using the Oscillator Basis

Basis M

10 0.14826
20 0.14361

FIG. 2. Pion momentum wave function using the oscillator basis. The40 0.14186
dotted, dot-dashed, dashed and solid curves correspond to using 10, 20,80 0.14109
40, and 80 basis functions, respectively.
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origin. This is a limitation of this naive model which must transforms can also be computed for l ? 0 using the same
methods, but these solutions are not singular at the originbe cured by ‘‘correcting’’ the form of the mass operator.

Independent of these considerations, it is possible to gener- for l . 0.
alize the methods of this paper to include this mild singular-

V. CONCLUSIONity in the basis functions.
The relevant configuration space basis functions (for

We have presented a set of exactly computable ortho-l 5 0) are
normal basis functions that are useful in computation in-
volving constituent quarks. The basis functions can be com-

fn(r) 5
1

ÏNn

e2Lr

ra L2(12a)
n (2Lr) (27) puted easily in both position and momentum space, making

it simple to calculate matrix elements in either space. A
with simple meson model shows that this basis is much better

at describing the high-momentum properties of hadronic
wave functions than the usual harmonic-oscillator basis,Nn 5

G(3 2 2a 1 n)
n!(2L)322a . (28)

even when only a few configurations are used. The utility
of this basis is not diminished in the presence of a spin–spin

The Fourier–Bessel transforms can be computed explicitly interaction of a scale to produce the physical f-r mass
by observing that the Fourier–Bessel transform of splitting.

jn(r) :5 rn2ae2Lr (29)
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